

Remediation Seminar

Volatile Fatty Acids: Key Markers for Electron Donor Optimization in Bioremediation Systems

Thu, Jan 28, 2021 1:00 PM - 2:00 PM EST

User Dashboard

Today's Speakers

- Gary M. Birk, P.E.
- Managing Partner
- Tersus Environmental, Wake Forest, NC

Today's Speakers

- Brent G. Pautler, Ph.D.
- Customer Service Coordinator
- SiREM, Guelph, ON

How Does Bioremediation Work?

(Drawing Modified from AFCEE and Wiedemeier)

Products & Services for *In Situ* Remediation • tersusenv.com © 2021 Tersus Environmental, LLC. All Rights Reserved.

What is needed?

- Organic substrates that ferment to:
 OAcetate
 OHydrogen
- Strong reducing conditions
- Right halorespiring bacteria
- •Nutrients

Anaerobic Fermentation

Soybean oil ferments to acetic acid and hydrogen

Soybean Fatty Acid Distribution

Fatty Acid				
C-16:0	Palmitic			
C-18:0	Stearic			
C-18:1	Oleic			
C-18:2	Linoleic			
C-18:3	Linolenic			

Percent
11.0 %
4.0 %
24.0 %
54.0 %
7.0 %

Fatty Acid Oxidation

Multiple step metabolic process

 $C_nH_{2n}O_2 + 2H_2O \Rightarrow C_{n-2}H_{2n-4}O_2 + 2H_2 + C_2H_4O_2$

- Removes two carbons from the chain
- Releases:
 - Four hydrogen atoms (H)
 - Acetic Acid (C₂H₄O₂)

Distribution of the correct type of fatty acids is essential

Acetate

Hydrogen (H₂)

Produced from linolenic acid, propionate, butyrate, etc.

- Slow consumption
- Will migrate downgradient
- Stimulates PCE -> TCE -> cDCE
- Will not stimulate cDCE -> VC -> ethene

- Rapid consumption
- Does not migrate beyond injection zone
- Required for cDCE -> VC -> ethene

pH Plays a Key Role in VFA Production

Systems under alkaline conditions

- Enhances the activity of fatty acid-producing bacteria
- Inhibits methanogens
- Increases production of VFAs

Anaerobic Bioremediation Deploying Electron Donor Via In Situ Alcoholysis

Products & Services for *In Situ* Remediation • tersusenv.com © 2021 Tersus Environmental, LLC. All Rights Reserved.

Volatile Fatty Acids: Key Markers for Electron Donor Optimization in Bioremediation Systems

Brent G. Pautler, Ph.D. **Customer Service** Coordinator

siremlab.com

Introduction to SiREM

Founded in 2002 in Guelph, ON Expanded to Knoxville, TN in 2020

SiREM

Provide products and testing services to support and improve site remediation

Further information: siremlab.com

The Basics of Enhanced Bioremediation

- Biostimulation: The addition of nutrients to stimulate microbial activity (e.g., electron donors)
- **Bioaugmentation:** The addition of beneficial microorganisms to improve the rate or extent of biodegradation
- SiREM bioaugmentation cultures: for remediation of chlorinated volatile organic chemicals and benzene

SiREM

KB-1 KB-1^{plus®} DGG(B)

Injection of KB-1[®] each liter has ~100 billion Dhc cells

Key Components for Bioremediation

Electron donor

E Constantino de La C

Electron acceptor

A compound that donates electrons (becomes oxidized)

 Example: simple organic compounds such as sugars, alcohols, or methane can be oxidized to carbon dioxide (CO₂) A compound that accepts electrons (becomes reduced)

 Example: inorganic compounds like oxygen, nitrate, sulfate, oxidized metals, or CO₂ can be reduced to water, dinitrogen gas, hydrogen sulfide, dissolved metals, or methane, respectively Key Microbial Biodegradation Processes

İ

Oxidative Biodegradation

Microorganisms use the contaminant as a food source (electron donor)

 Need an electron acceptor (e.g., oxygen)

Reductive Biodegradation

Microorganisms use the contaminant as an electron acceptor

> Need a food source (electron donor)

Co-metabolism

Microorganisms break down contaminant w/o using it as a growth substrate (e.g., by enzyme secretion)

Importance of Oxidation-Reduction Potential

3-Nitrification

4-Denitrification

7- Acid Formation

8- Methane Formation

ORP Probe

SiREM

Chlorinated VOCs and Molecular Metabolism

Conceptual Bioremediation of Chlorinated VOCs

• Pre- and post-substrate contaminant mass from bioremediation

Conceptual Changes in Contaminant Molar Concentration over Time with Sequential Anaerobic Dechlorination

Bioremediation Monitoring gene trac An

- Quantify microbial biodegraders (qPCR)
- Determine impact of site amendments including electron donor/acceptors on microbial community
- Monitor progress and validate performance of bioremediation

Anions Analysis

- Monitor Cl⁻ released during reductive dechlorination
- Monitor competing electron acceptors, e.g., nitrate/sulfate

Volatile Fatty Acids

- Confirm fermentation of slow release and soluble electron donors
- Map fermentation pathways
- Determine the need for additional electron donor

Dissolved Hydrocarbon Gases

- Confirm complete dechlorination of chlorinated ethenes, ethanes and propanes
- Quantify methanogenesis
- Quantify gases used in co-metabolic remediation

Reductive Dechlorination by Dhc

H₂ as Direct Electron Donor

- Produced by fermentation organic substances
 - Carbohydrates
 - Alcohols
 - Fatty Acids (VFAs)
- Consumed quickly

Specialty Chemical Analytical Services for Remediation

Volatile Fatty Acids (VFAs)

 Quantification used to assess electron donor status in bioremediation systems and fermentation

Typically done with a standard IC
 Method

Electron Donors for Anaerobic Bioremediation

- TOC as a proxy for energy source for bioremediation?
 - Not all TOC the same and available/ferments to H₂
 - VFAs not quantified by many TOC methods
 - Many competing processes and electron acceptors
- Choose the most appropriate based on the site characteristics

Lactate

Electron Donors - Reactions

- Fermentation
 - Redox reaction where different portions of a single substrate are oxidized and reduced → Energy

 $C_{56}H_{100}O_6$ (soybean oil) + 50 $H_2O \longrightarrow 28CH_3COOH + 44H_2$

Electron Donor	Electron-Donor (Oxidation) Reaction		
Ethanol	$C_2H_6O + H_20 \Longrightarrow C_2H_3O_2^- + H^+ + 2H_2$		
	ethanol fermentation to acetate		
Methanol	$CH_4O + 2H_2O \Rightarrow CO_2^- + H_2O + 3H_2$		
	methanol fermentation		
Acetate	$C_2H_3O_2^- + 4H_20 \Longrightarrow 2CO_2^- + 2H_2O + 4H_2$		
	acetate fermentation		
Butyrate	$C_4H_7O_2^- + 2H_20 \Longrightarrow 2C_2H_3O_2^- + H^+ + 2H_2$		
	butyrate fermentation to acetate		
Propionate Lactate	$C_3H_5O_2^- + 3H_20 \Longrightarrow C_2H_3O_2^- + CO_2^- + H_2O + 3H_2$		
	propionate fermentation to acetate		
	$C_3H_5O_3^- + 2H_2O + \Longrightarrow C_2H_3O_2^- + CO2^- + H_2O + 2H_2$		
Luciute	lactate fermentation to acetate		

Fennell & Gossett, (1998) ES&T, 32: 2450-2460

He et al, (2002) ES&T, 36: 3945-3952

SiREM

Sources and Roles of Specific VFAs

VFA	Structure	Formula (Ion)	Source	Role
Lactate		C₃H₅0₃ [.]	Common primary amendment/component of EVO mixtures	Rapidly fermented to propionate and acetate producing hydrogen for dechlorination (Aulenta et al., 2007)
Acetate	H ₃ C H ₃ C	C₂H₂O₂ [.]	From fermentation of lactate/EVO/sugars	Electron donor for some (incom- plete) dechlorination reactions (e.g., Krumholtz et al., 1996) Carbon source for <i>Dhc</i> (Cupples et al., 1993)
Propionate	H H H H H H H H H H H H H H H H H H H	CH3CH2COO.	From fermentation of lactate/EVO/alcohols	Fermented to produce hydrogen and formate
Butyrate	н н н н н н н н н н н н н н н	CH ₃ CH ₂ CH ₂ COO	From fermentation of EVO/alcohols	Fermented to produce hydrogen and acetate
Formate	H O	CH ₂ O ₂ ·	From fermentation of propionate	Fermented to produce hydrogen and bicarbonate
Pyruvate	H _I C COO	C3H4O3.	From fermentation of sugars	Fermented to propionate and acetate with hydrogen production (Cope and Hughes, 2001)

SiREM

VFAs as an Electron Donor Status Indicator

During Active Fermentation

- Acetate generally increases over time
- Stabilization of acetate over time in absence of other VFAs may indicate exhaustion of electron donor supply
 - Longer lasting when compared to other VFAs with low energy yield
 - Mobile: will migrate downgradient
 - Tends to encourage acetoclastic methanogenesis
 - Will not stimulate cDCE \rightarrow VC \rightarrow Ethene

VFAs Composition and *Dhc* Populations

VFA composition positively impacts growth of *Dhc* and dechlorination

- Propionate and butyrate showed strongest correlation
- Lesser extent formate and acetate
 - Acetate formation linked to production of propionate (from lactate fermentation) or related to previous fermentation
 - Acetate in the absence of other VFAs \rightarrow No positive relationship with *Dhc* population
- Lactate and pyruvate were not positively correlated

VFAs & Source Zone Bioremediation Challenges

SiREM

DNALP

- Toxic concentrations/pH
- Absence of proper microbes
- Electron donor and micronutrients are in high demand and limiting
- Delivery challenges

Can overcome source zone bioremediation challenges and optimize remediation systems

Importance of Geobacter to DNAPL

"A potential advantage of bioremediation technology is that microorganisms-which can attack the contaminant at or near the DNAPL water interface, may provide an effective, efficient, and less costly approach to DNAPL source zone remediation" *Geobacter* growth

IRTC Remediation of DNAPLs Team

Ethene

High Concentration Dissolved PCE Geobacter Dominated Lower Concentration CVOC Plume Dehalococcoides Dominated

CDCE

in source zone

TCE

Proposed DNAPL Bioremediation Strategy

Case Study: Biotreatability New York Site

Mixed chlorinated ethenes, chlorinated ethanes and CFC-113

- CFC-113 (1.5 mg/L)
- 1,1,1-TCA (1 mg/L)
- 1,1,-DCA (0.5 mg/L)
- VC (0.15 mg/L)

Nicrocusm Control 2

Treatments

- Sterile and Active Controls
- Lactate Amended
- Lactate Amended & KB-1[®] Plus Bioaugmented

treatability

Case Study: Biotreatability New York Site

Lactate Amended

Case Study: Biotreatability New York Site

Lactate Amended/KB-1[®] Plus Bioaugmented

Case Study: Biotreatability New York Site Volatile Fatty Acids

KB^{plus®} Contains Fermenters

More robust fermentation

Case Study: Bioaugmentation, California Site

Chlorinated ethenes

- TCE
- PCE
- DCE
- VC

EVO (EDS-ER[™]) & soluble donor

KB-1 KB-1

Case Study: Bioaugmentation, California Site

140 Injection Points Total

Quarterly
 Monitoring

SiREM

Case Study: Bioaugmentation, California Site

Formate & Pyruvate N.D

Sample Collection and VFA Analytical Method

Sample Collection

- Purge sampling points
- Collect samples in 40 mL VOA vials (duplicate)
 - Unpreserved
 - Filled with no headspace
- Ship and store at 4°C

SiREM

Ion Chromatography (IC) – Electrical Conductivity Detector (ECD)

- Modified EPA Method 300.0
- Calibrated with external standards
- MDLs (mg/L)
 - Lactate (0.40)
 - Acetate (0.54)
 - Propionate (0.31)
 - Formate (0.23)
 - Butyrate (0.41)
 - Pyruvate (0.69)

Summary

Volatile Fatty Acids

- Maximizing total VFAs is beneficial, optimal amount is greater than 100 mg/L
- If VFAs are predominantly acetate, additional electron donor may be required
- VFA composition (propionate) is positively associated with high *Dhc* concentrations
- Acetate is consumed by *Geobacter and* can be utilized in DNAPL bioremediation

Affordable IC VFA analyses provide valuable data for monitoring, managing and optimizing bioremediation systems

Questions?

http://www.siremlab.com/

http://www.siremlab.com/analytical-testing/

tersus environmental

bpautler@siremlab.com

For Upcoming Events, Visit

www.RemediationSeminar.com

