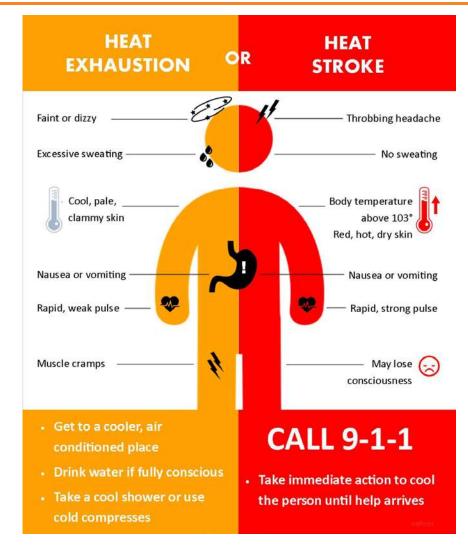
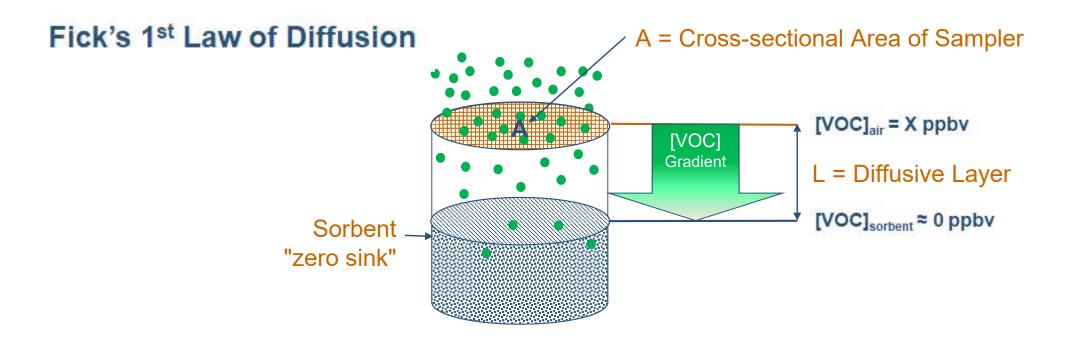
Patented Quantitative passive VOC soil-gas Monitoring with the Waterloo Membrane Sampler[™]


Thought Leaders Webinar Series

June 24th, 2021

Brent G. Pautler, Ph.D., Todd A. McAlary, Ph.D.

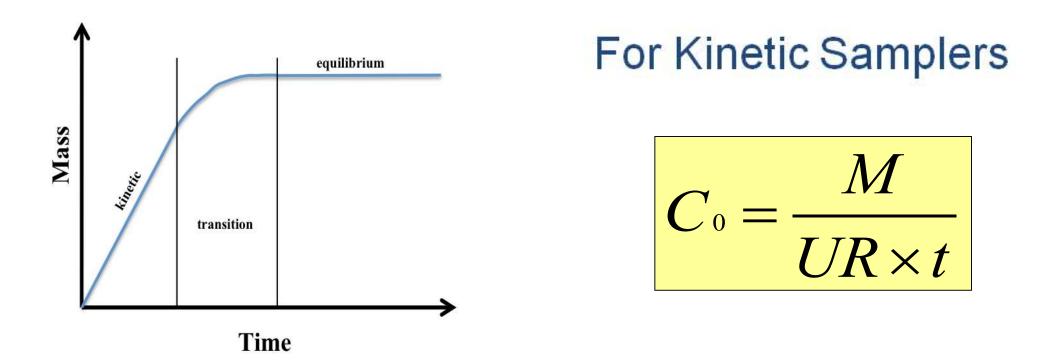
Safety Moment – Working in the Heat



Outline

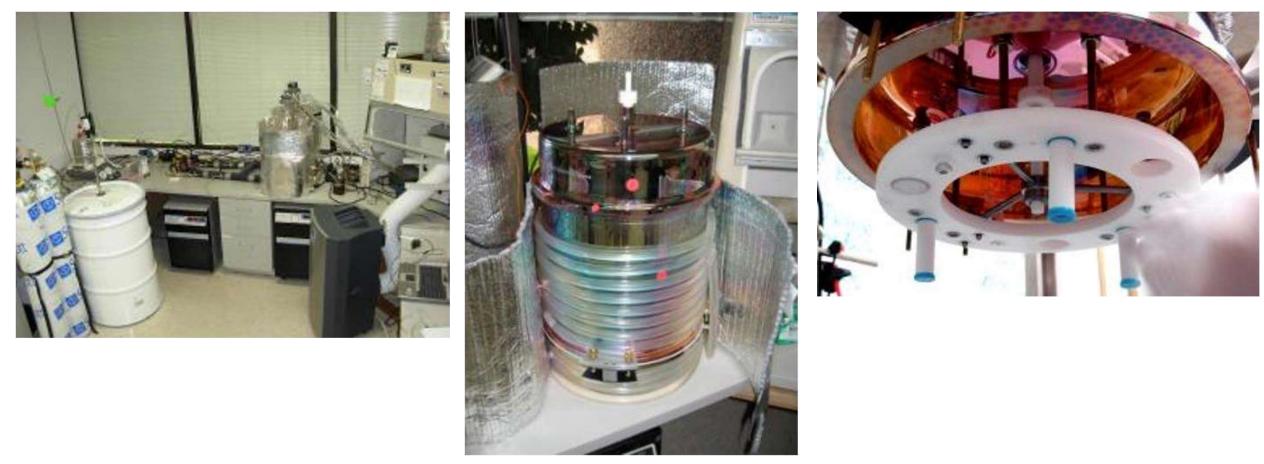
- Passive Sampling Concepts
- Quantitative Soil Vapor Concentration Determination
- Data Quality and Regulatory Acceptance
- Case Study
- Sewer Gas Monitoring
- Take-Home Messages

Passive Sampling Concepts



Uptake Rate = Rate at which a chemical vapor passes through opening

$$UR_{ideal} = D^*(A/L)$$


D = Diffusion Coefficient

Passive Sampling Concepts

Calibration

Uptake rates are typically determined by controlled chamber tests Can also be determined by "field-calibration" using split samples via active sampling

Why Passive Sampling?

EPA TO-15 and TO-17

- Assembly and leak checking protocols required
- Loss of canister vacuum
- Failure of fittings or flow controllers

Passive Sorbent Methods

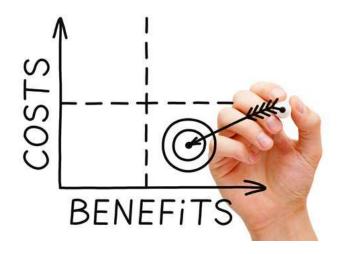
- No electricity, mechanical parts, connections
- Quick & simple protocols
- Unobtrusive
- Inexpensive to ship

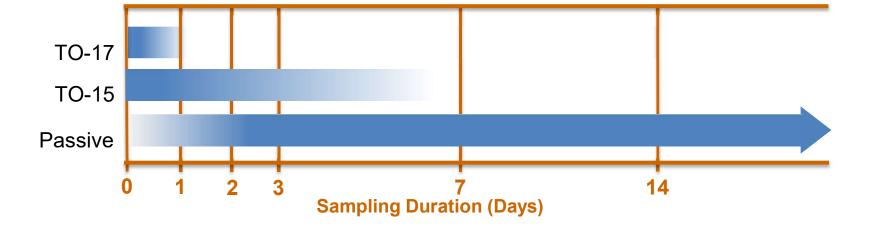
- Flow calibration and pump operation knowledge required
- Power required
- Changes in flow rate

Shipping and Handling

72 six-liter canisters

72 passive samplers


Key Point


Passive samplers are much easier to work with.

Why Passive Sampling?

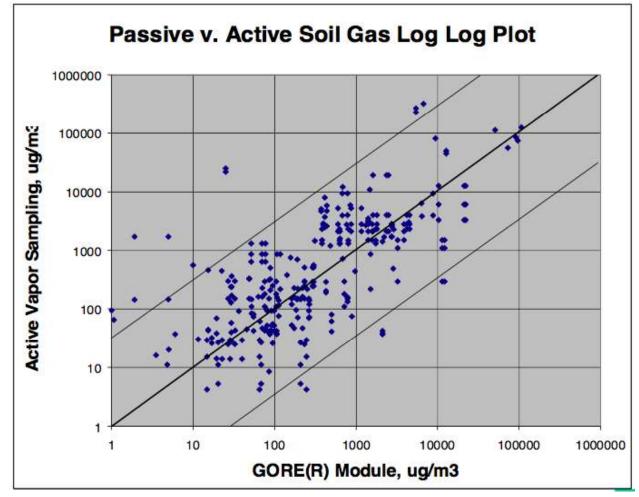
Technical Advantages

- Time-integrated sampling
 - Adjustable sensitivity
 - Minimizes sampling variability
- Capable of generating trace level RLs
 - Quantitative results

Quantitative Passive Soil Vapor Monitoring with the Waterloo Membrane Sampler™

Conventional Sub-Slab and Soil Gas Sampling

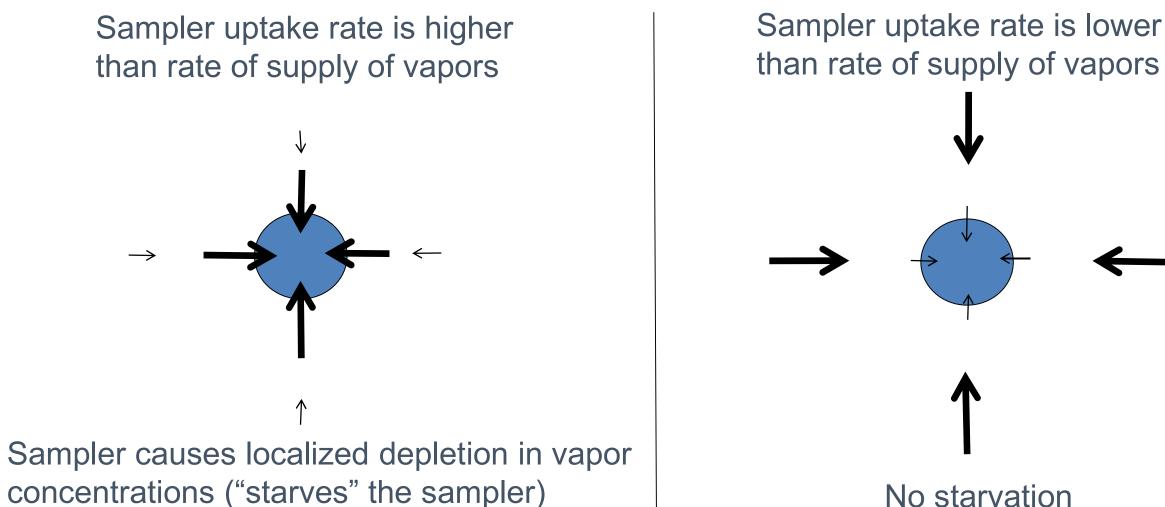
Geoprobe™/Direct Push


QA/QC Considerations

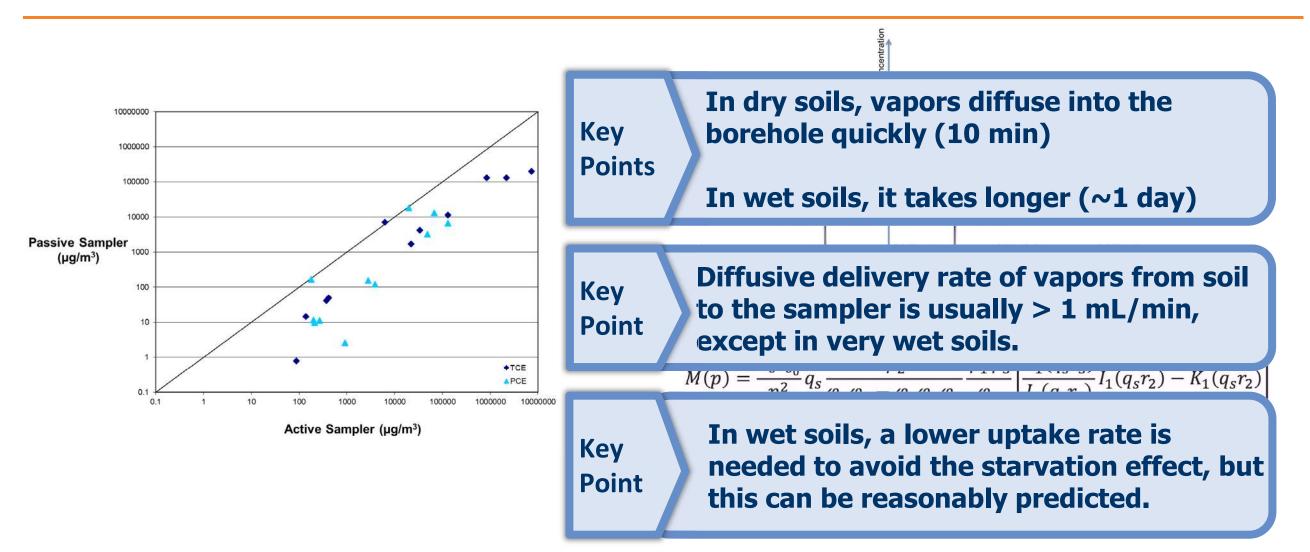
- Inert Materials
- Leak-proof Seals
- Shut-in Test & Helium Tracer Test
- Purging rate, volume
- Vacuum and Permeability
- Field Screening (VOCs, O₂, CO₂, CH₄)
- Sampling (TO-15, TO-17, TO10A, etc.)

Key Labor intensive, multiple fail points, lots of equipment

Passive Soil Gas Sampling


www.events.awma.org/education/Posters/Final/Whetzel_Poster.pdf

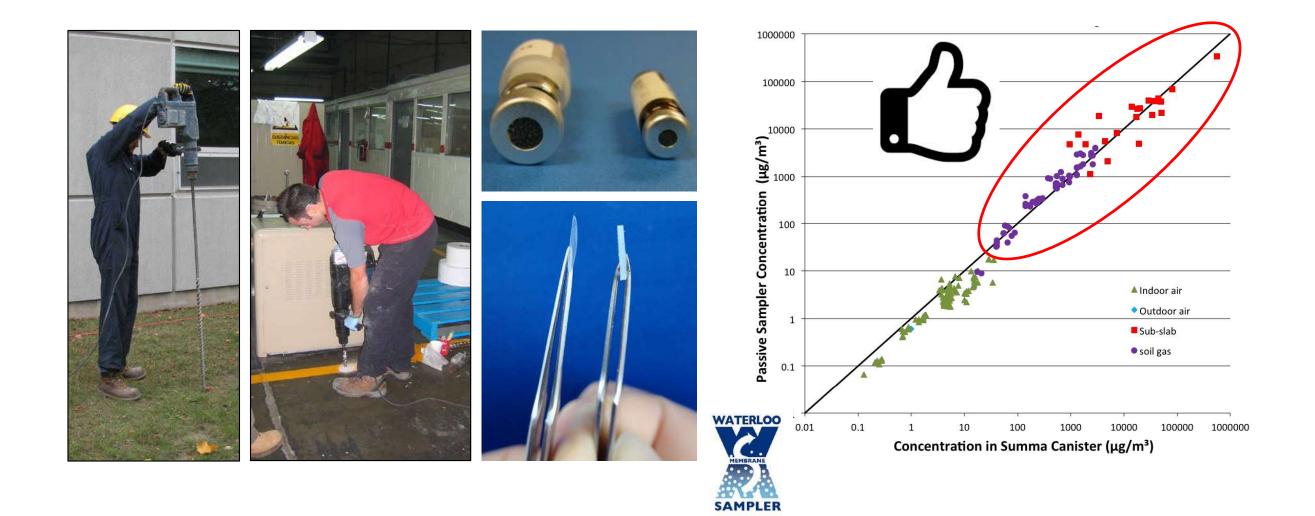
"passive soil gas samples cannot be used to measure the contaminant concentration in soil gas" California DTSC, 2011


> Key Point

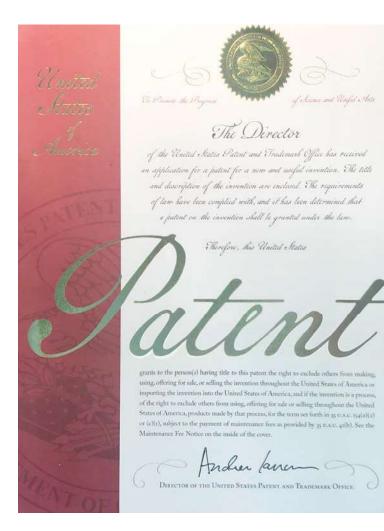
People have been burying sorbents in the ground for 3 decades or more, with limited ability to quantify soil vapor concentrations

The "Starvation Effect"

Developing Quantitative Soil Vapor Sampling



The Waterloo Membrane Sampler[™] (WMS[™])



https://www.youtube.com/watch?v=J6TAz6aFI-4&feature=youtu.be

Quantitative Passive Soil Vapor Sampling

Patented: Quantitative Soil Vapor Sampling

McAlary	ed States Patent y et al.	(10) Patent No.: US 9,399,912 B2 (45) Date of Patent: Jul. 26, 2010
		(56) References Cited U.S. PATENT DOCUMENTS
Applicant:	: Geosyntee Consultants, Inc., Boca Raton, FL (US)	4,805,450 A 21989 Bennett et al. 4,887,464 A 12/1989 Tannenbaum et al.
	(CA); Suresh Seethapathy, Annapolis, MD (US); Tadeusz Gorecki, Waterloo (CA)	5.246,005 A 9.1994 Robbins 5.482,677 A 1.1996 Yao et al. 422.8 5.497,829 A 3.1996 Rajkovich 5.992,213 5.992,213 A 3.11990 Tatre 73/19.0 6.226,852 B1 \$ \$2001 Gundel et al. .29.45 6.226,852 B1 \$ \$2001 Tatre .73/19.0 6.246,66 B1 \$ \$2003 Woolfenden et al. .73/89.0
Assignce:	Geosyntee Consultants, Inc., Boca Raton, FL (US)	6,645,773 B2 * 11/2003 Tipler436 16 6,758,274 B2 * 7/2004 Parent et al166/26 (Continued)
Notice:	Subject to any disclaimer, the term of this natent is extended or adjusted under 35	FOREIGN PATENT DOCUMENTS
	U.S.C. 154(b) by 165 days.	GB 2263769 4/1993 OTHER PUBLICATIONS
Appl. No.:	14/022,960	
Filed:	Sep. 10, 2013	Seethapathy, S., Gorecki, T., McAlary, T., 2008. Recent advances in permeation passive sampling for vapour intrusion studies. Presenta tion at the University Consortium for Field-Focused Groundwate
	Prior Publication Data	Contamination Research: May 6, 2008, Orangeville, Ontario.
US 2014/0	069184 A1 Mar. 13, 2014	(Continued)
Provisiona 13, 2012.		Prinary Examiner — Tixa Capato Assistant Examiner — Tixan M Tran (74) Attorney, Agent, or Firm — Barnes & Thoraburg LLP Jeon T. Kluger (57) ABSTRACT The invention provides a device and method to quantitatively
E21B 49/0 U.S. Cl.	E21B 49/081 (2013.01); E21B 49/08	measure concentrations of volatile organic compound vapor below the ground surface using a preferably "fully" passiv device that is placed in a drilled or bored hole for a specifice period of time, wherein the sampler constrains the uptake rate
CPC	lassification Search E21B 49/081	or match values that minimize or eliminate the starvation effect and provide acceptable sensitivity for most soil types a calculated via mathematical models.
See applic	ation file for complete search history.	20 Claims, 18 Drawing Sheets
	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Boole a
	OF SAMI Applicant Inventors: Assignce: Notice: Appl. No. Filed: US 20144 Rc Provision 13, 2012. Int. Cl. E2JB 494 U.S. Cl. Filed of C CPC.	Inventors: Todd Arthur McAlary, Mississauga (CA): Suresh Seethapathy, Ananolis, MD (US): Tadeux Goreek, Maaroon (CA) Assigner: Geosyntee Consultants, Inc., Boca Ramo, FL (US) Notice: Subject to any disclaimer, the term of this public to any disclaimer, the term of this U.S.C. 154(b) by 165 days. Appl. No: 14022,960 Filed: Sep. 10, 2013 Prior Publication Data US 2014/0009184 A1 Mar. 13, 2014 Related U.S. Application Data Provisional application No. 61/700,667, filed on Sep. 13, 2012. Int. CI. E21B 49/081 (2013.01): E21B 49/081 CPC [2014.0008] Field Classification Search [21B 49/081 CPC [21B 49/081] See application Ile for complete search history.

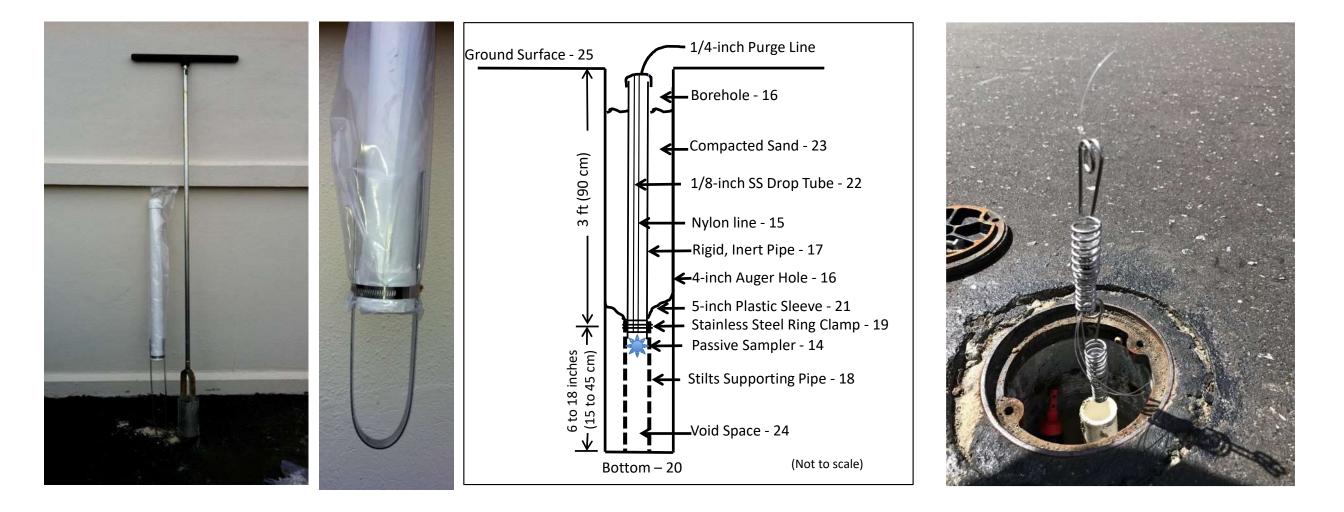
U.S Patents No. 9,399, 912 (July 2016) and 10,060,259 (Aug 2018)

Soil Gas Measurements

- Waterloo Membrane Sampler™ (WMS)™
 Oquantitative soil gas measurements
 - Lower uptake rate to minimize starvation effect
 - Uptake rate: WMS > WMS-LU > WMS-TM

	WMS	WMS-LU	WMS-TM	WMS-TD
Sub-slab, porous fill material				
Standard soil material		\bigcirc		
Wet and/or clay material			\bigcirc	
SVE Vent Pipe / Sewer Gas				
Indoor/Outdoor Air				\bigcirc

Sample Duration



SAMPLE DURATION CALCULATOR

Analyte Benzene 🗘 Reporting Limit (µg/m³) 10 🗘 Sample I	uration 10 Day	C Sample Duration	10	Reporting Limit (µg/m³)	\$	zene	lyte Benzene
---	----------------	-------------------	----	-------------------------	----	------	--------------

https://www.siremlab.com/waterloo-membrane-sampler-wms/

Sampler Deployment – Soil Gas Well

Sampler Deployment – Temporary Probe

Foam plug (inside plastic sleeve)

sampler and holder

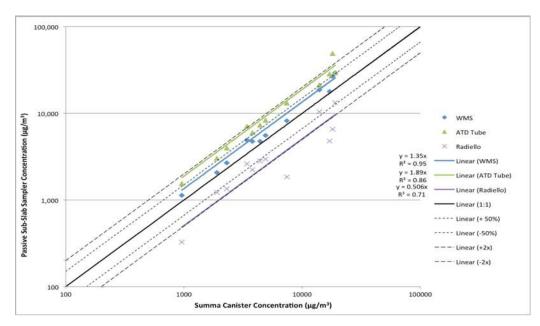
drilled hole

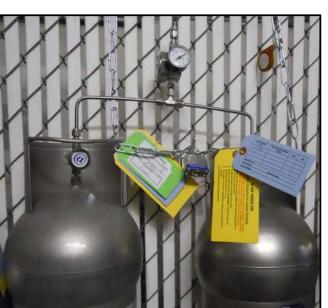
WALAR

https://www.youtube.com/watch?v=IOrETw9F98w

Soil Gas Sampling – Data Presentation

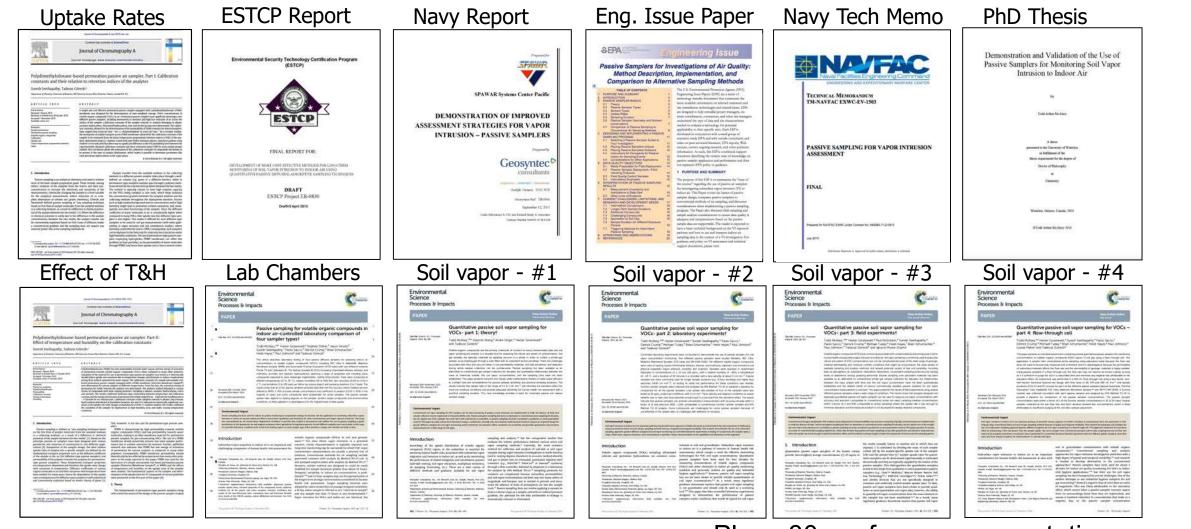
PCE TCE tDCE VC cDCE


Regulatory Acceptance Case Study WMS™ in Sewer Headspace



Regulatory Acceptance

Inter-method Split Samples


 Co-located and coincident
 Analyzed by conventional method
 Correlation charts and "field-calibration"

Articles & Reports

Plus ~30 conference presentations

Case Study: Air Force Base, California

Challenges:

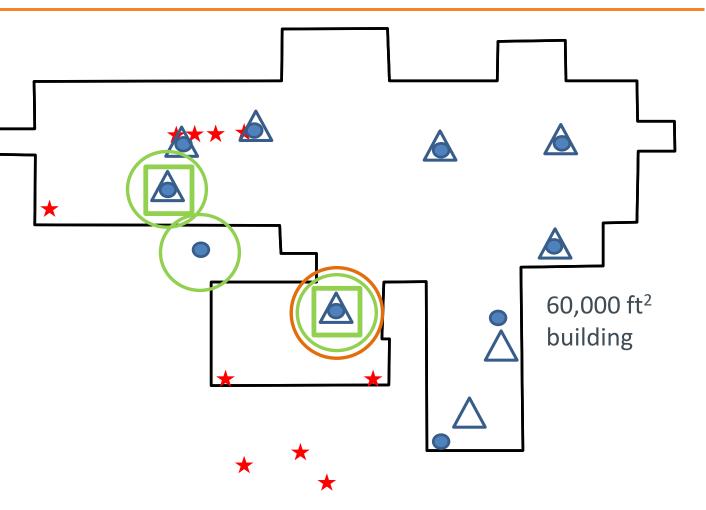
- Multiple regulatory agencies Cal EPA, DTSC, Water Board (2 different regions)
- Extremely protective screening levels
- Regulatory policy: reporting limits 1/10th of screening levels
- Mission critical uses/activities inside buildings
- Multiple operable units
- Temporal variability, spatial variability and background sources

Rationale

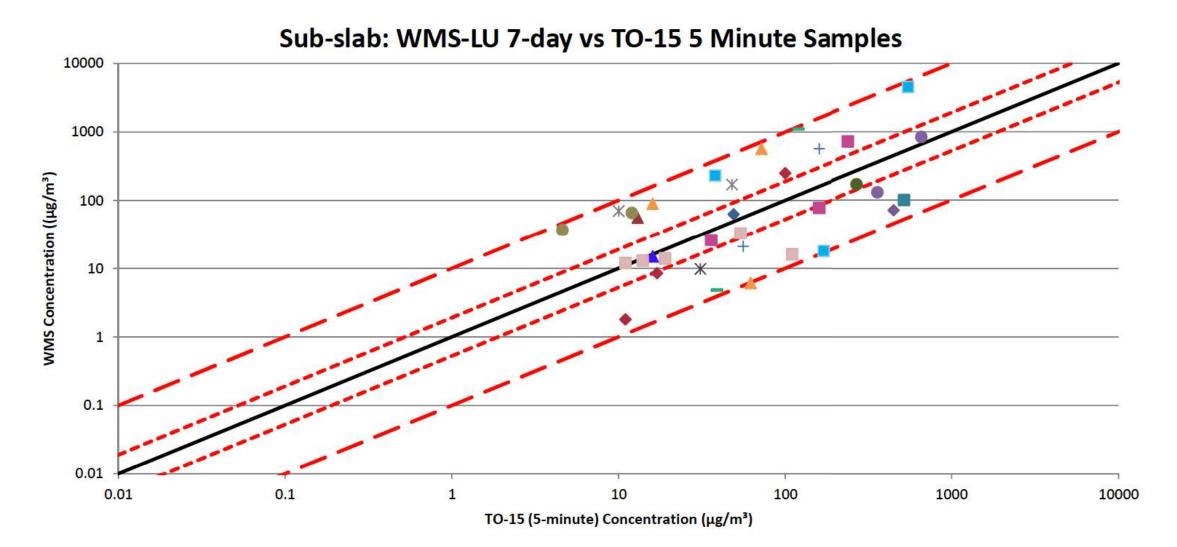
Scope Item	Number	Rationale
Building Survey	11 buildings	Identify interior sources of VOCs to support forensic analysis
Subslab screening via PID, FID, LFG meters	56 locations	Select locations of interest for inter-method duplicate samples
Subslab WMS over 7-day duration	56 locations	Spatial coverage and temporal variability management
Subslab Summa/TO-15 verification samples	13 locations	Field check passive sampler calibration
Indoor and Outdoor air WMS over 7-day duration	76 locations	Spatial coverage and temporal variability management
Indoor Outdoor Summa/TO-15 verification samples	23 locations	Field check passive sampler calibration, provide Level IV Data Validation required for risk assessment
24 hr vs 7-day Summa/TO-15 comparison	11 locations	Assess temporal variability
Cross-slab differential pressure monitoring	11 locations	Assess whether building was inhaling or exhaling
Forensic analysis of background sources	11 buildings	Attribute VOCs to subsurface vs interior sources
Building-specific attenuation factor calculations	11 buildings	Calculate indoor air concentrations for compounds detects in subslab but not in indoor air for assessment of cumulative risks

Example Location Map

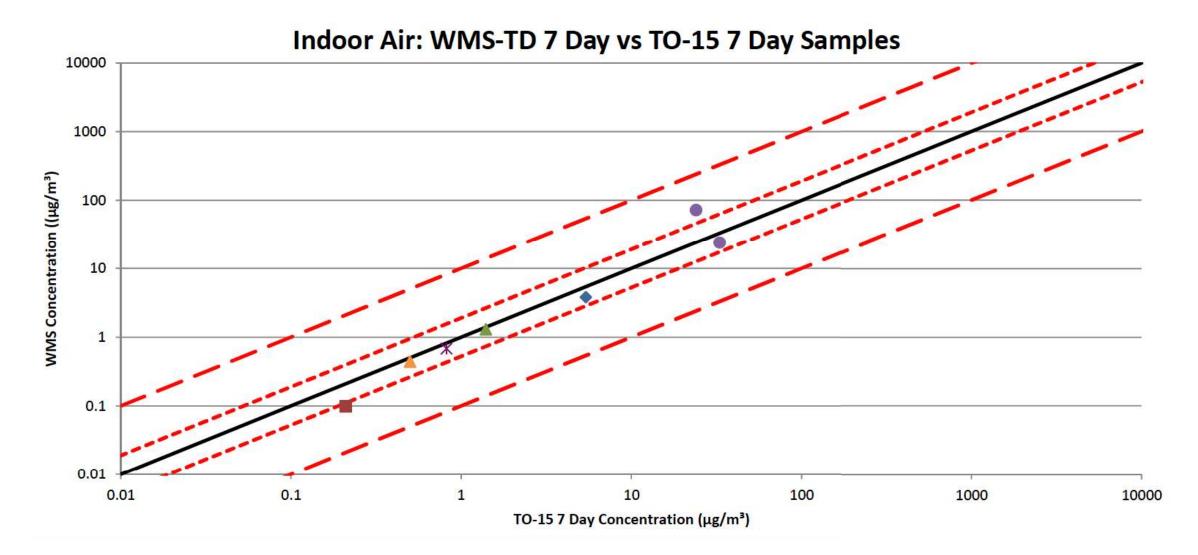
★ AOC or SWMU

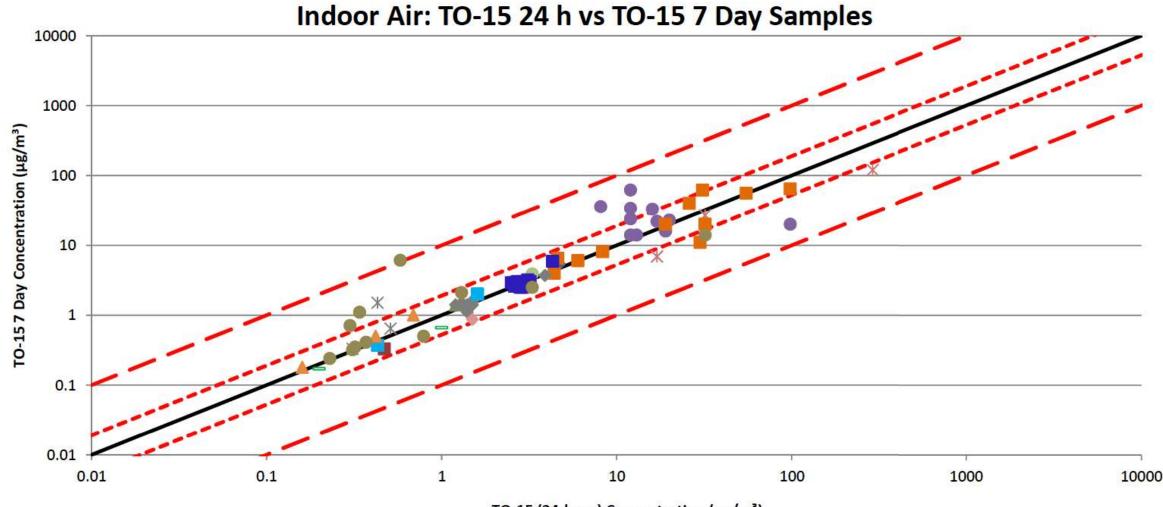

WMS 7-day air sample

 \triangle WMS 7-day subslab sample


Summa grab/TO-15 subslab sample

24 hr Summa/TO-15 air sample


7-day Summa/TO-15 air sample


Subslab WMS vs Summa/TO-15

Indoor Air WMS vs Summa/TO-15

24 hr vs 7 day Summa/TO-15

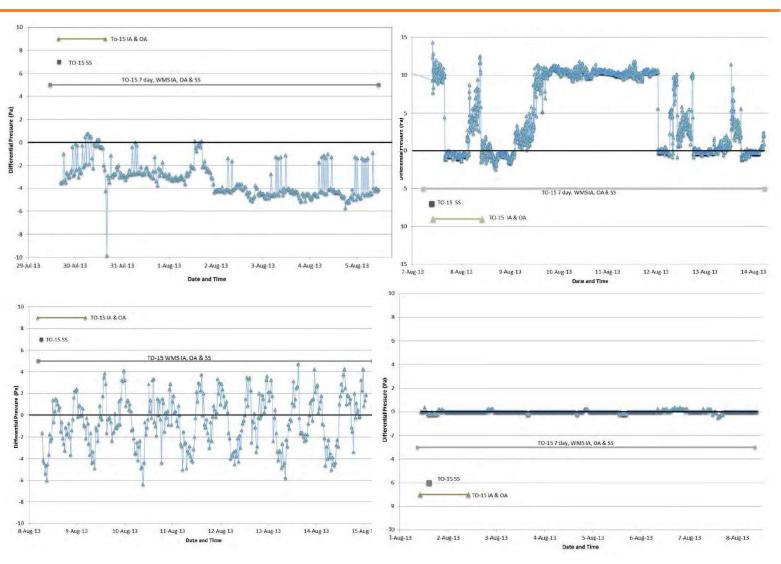
TO-15 (24-hour) Concentration (µg/m³)

Data Quality Objective: RL < SL

Compound (µg/m ³)	METHOD	USEPA	CA	QAPP	Min	Max	Frequency of		Frequency of RL
		SSSL	SSSL	PQL	RL	RL	RL > USEPA SSSL	> CA SSSL	> PQL
1,1,2,2-Tetrachloroethane	TO-15	7	4.2	7	7.8	65	14/14	14/14	14/14
1,1,2-Trichloroethane	TO-15	26	15	26	6.2	52	1/14 ⁽¹⁾	1/14 ⁽¹⁾	1/14
1,2,4-Trichlorobenzene	TO-15	290	180		34	280	0/14	1/14 ⁽¹⁾	1
1,2-Dibromoethane (EDB)	TO-15	0.67	0.4	3.8	8.8	73	14/14	14/14	14/14
1,2-Dichloroethane	TO-15	16	9.4	16	4.6	38	1/14 ⁽¹⁾	2/14 ⁽¹⁾	1/14
1,2-Dichloropropane	TO-15	40	24		5.3	44	1/14 ⁽¹⁾	1/14 ⁽¹⁾	
1,3-Butadiene	TO-15	14	1.4		2.5	21	1/14 ⁽¹⁾	14/14	
1,4-Dichlorobenzene	TO-15	37	22		6.8	57	1/14 ⁽¹⁾	1/14 ⁽¹⁾	9 <u>2.11</u>
3-Chloropropene	TO-15	70	40		14	120	1/14 ⁽¹⁾	1/14 ⁽¹⁾	
alpha-Chlorotoluene	TO-15	8	5		5.9	49	1/14 ⁽¹⁾	14/14	122
Parata	WMS S.E.	53	8.4	53	26	30	0/62	56/62	0/62
Benzene	TO-15	53	8.4	53	3.6	30	0/14	1/14 ⁽¹⁾	0/14
Bromodichloromethane	TO-15	11	6.6		7.6	63	1/14 ⁽¹⁾	14/14	
Carbon Tetrachloride	WMS S.E.	67	5.8	-	8.7	10	0/62	61/62	(; ***)
Carbon Tetrachionde	TO-15	67	5.8	875	7.2	16	0/14	13/14	10-00-
Chloroform	TO-15	18	11	18	5.6	12	0/14	1/14 ⁽¹⁾	1/14
cis-1,3-Dichloropropene	TO-15	100	15	100	5.2	43	0/14	1/14 ⁽¹⁾	
Dibromochloromethane	TO-15	15	9		9.7	80	2/14 ⁽¹⁾	14/14	
Hexachlorobutadiene	TO-15	19	11	21	49	400	14/14	14/14	14/14
Methylene Chloride	TO-15	40000	240	41000	40	330	0/14	1/14 ⁽¹⁾	0/14
Naphthalene	WMS S.E.	12	7.2	12	4.4	5.1	0/62	0/62	0/62
Naphthalene	TO-15	12	7.2	12	10	79	12/14	13/14	12/14
Tetrachloroethene	TO-15	1600	42	1567	7.7	64	0/14	1/14 ⁽¹⁾	0/14
trans-1,3-Dichloropropene	TO-15	100	15		5.2	43	1/14 ⁽¹⁾	1/14 ⁽¹⁾	
Vinyl Chloride	WMS S.E.	93	3.2	93	120	150	62/62	62/62	62/62
v myr emonae	TO-15	93	3.2	93	2.9	24	0/14	3/14	0/14

TO-15 RL > CASSSL for: 1122PCA EDB 13Butadiene α-chlorotoluene BDCM CTET (13/14) DBCM **HCBD** Naphthalene (13/14) WMS RL > CASSSL for: Benzene CTET Vinyl Chloride

(red also for USEPA SSSL


Cross-Slab Differential Pressure

- Negative building pressure

 Worst case scenario?
- Positive building pressure
 Temporal variability?
- Cyclic building pressure

 Representative of long-term?
- Consistently neutral

 Leaky buildings
 - \circ Leaky floors

Case Study Summary

- 7-day samples minimize risk of bias from temporal variability
 Co-located samples demonstrates correlation between passive/active
- There is no silver bullet
 - $_{\odot}$ TO-15 was needed for:
 - vinyl chloride,
 - Level IV data validation
 - WMS was needed for:
 - naphthalene,
 - rapid deployment and retrieval to minimize disruption and cost
 - larger number of locations to minimize risk of false negative outcome from spatial variability
- Accepted by all three agencies in California
 - Took a bit of discussion, but getting easier over time

WMS in Sewer Headspace

Verify depth

Assemble hanger

Deploy

Come back in 7 to 30 days

Take Home Messages

- Passive Sampling simplifies VOC monitoring for soil-gas and vapor intrusion
 - Proven performance
 - $\,\circ\,$ Simple protocols, no moving parts, easy shipping
- Manage variability:
 - Integrate over time
 - Minimal operator error
- Benchmarking supports regulatory acceptance
 - 1 of 10 samples collected with a duplicate by Summa/TO-15
- Study design takes some thought
 - $_{\odot}$ Target compounds and screening levels affect sample duration
 - Consider thick membrane for long sample durations
 - Cost savings make it worthwhile

Questions

Todd McAlary tmcalary@geosyntec.com

Brent Pautler bpautler@siremlab.com

